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Nearly 1 billion people still lack electricity access. Developing countries
are investing billions of dollars in “last-mile” electrification, although
evidence on its economic impacts is mixed. We estimate the develop-
ment effects of rural electrification in the context of India’s national
electrification program, RGGVY (Rajiv Gandhi Grameen Vidyutika-
ran Yojana), which reached over 400,000 villages. Using regression-
discontinuity and difference-in-differences designs, we estimate that
RGGVY meaningfully expanded electricity access. However, the pro-
gram generated limited economic impacts after 3–5 years. Scaling
our intent-to-treat estimates using instrumental variables, we find that
“full electrification” reduces welfare in small villages but has a 33% in-
ternal rate of return in large villages.
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I. Introduction
Nearly 1 billion people still lack access to electricity, despite substantial
investments to extend the power grid across the developing world.1

The International Energy Agency projects that achieving universal elec-
trification will cost $49 billion per year between 2019 and 2030. The vast
majority of remaining unconnected households live in rural South Asia
and sub-Saharan Africa (IEA 2019).
While electricity access is highly correlated with GDP (gross domestic

product) at the national level, prior research on the causal effects of elec-
trification has producedmixed results. Seminal early work finds large pos-
itive impacts of electrification on development outcomes (Dinkelman
2011; Rud 2012; Lipscomb, Mobarak, and Barham 2013). In contrast, re-
cent experimental evidence finds rural electrification to be welfare reduc-
ing, with negligible benefits and large costs (Lee, Miguel, and Wolfram
2020b), and estimates only modest welfare gains from expanding access
to grid power (Burgess et al. 2023). Such discrepancies may reflect differ-
ences in scale: while estimates of large economic impacts have tended to
come from electrifying large populations (e.g., entire Indian states in
Rud 2012), studies finding less favorable welfare impacts have been con-
ducted at the village level—a scale that is more representative of today’s
electrification efforts.
In this paper, we estimate the economic impacts of electrification in the

context of India’s massive national rural electrification program, Rajiv
Gandhi Grameen Vidyutikaran Yojana (RGGVY). The “Prime Minister’s
Rural Electrification Program” was launched in 2005 to expand both do-
mestic and commercial electricity access in over 400,000 rural villages
across 27 Indian states. India is a useful setting for studying ongoing rural
electrification efforts, as it contributed over 80% of global gains in new
household grid connections between 2000 and 2016 (IEA 2017). More-
over, India’s per capita income during the RGGVYperiod was similar to in-
come levels in countries with significant unelectrified populations today
(see fig. 1). The program’s scope also provides a unique opportunity to ad-
dress the divergent results from the existing literature.
We use two key features of RGGVY’s implementation to estimate the

program’s impacts on both electricity access and economic outcomes.
First, villages were eligible for electrification under RGGVY only if they
supported by the National Science Foundation’s Graduate Research Fellowship Program
under grant DGE–1106400. Finally, we thank Michael Greenstone, who provided invalu-
able guidance as the editor of this article. All remaining errors are our own.

1 Roughly 800 million people remained unelectrified in 2018, down from 1.2 billion in
2010 (Tracking SDG7 2020). Universal energy access is United Nations Sustainable Devel-
opment Goal 7 (UNDP 2015), and electrification is a key piece of the World Bank’s invest-
ment strategy (World Bank 2015).
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contained at least one neighborhood (“habitation”) larger than 300 people.2

This allows us to estimate a regression-discontinuity (RD)design, using this
population-based eligibility threshold. Second, RGGVY had a staggered
rollout, treating districts in two waves corresponding to India’s 10th and
11th Five-Year Plans. This facilitates a difference-in-differences (DD) design
comparing first- and second-wave districts. Using both administrative and
geospatial data, we apply ourRD strategy to a sample of over 10,000 villages
with close to 300 people and our DD strategy to nearly all of rural India.
We first show that RGGVY led to substantial increases in electricity ac-

cess. We find that RGGVY provided commercial power to 1 in 13 barely el-
igible 300-person villages that previously lacked access, while increasing av-
erage commercial power supply by 0.56 hours per day.3 We also find that
RGGVY electrified one in seven previously unconnected rural households
infirst-wave districts and increased averagehousehold electricity consump-
tion by 4 kilowatt-hours (kWh) per month. Consistent with these direct
measures of electrification, we estimate 4–5 percentage point (pp) in-
creases in household electric lighting adoption. We detect corresponding
FIG. 1.—Electricity access and per capita GDP: India versus the world. This figure plots
country-level per capita GDP (in 2010 USD) versus the share of the population with elec-
tricity access. Gray lines indicate India’s levels in 2011, at the end of our study period. Cir-
cles show all 46 countries with below 80% electricity access in 2018, with a total population
of 1.28 billion people. Circle sizes are scaled by each country’s population. Twenty-eight
counties (containing 66% of the people) had 2018 per capita GDPs lower than India’s
2011 per capita GDP. An additional five countries (containing 11% of the people) had
per capita GDPs within 20% of India’s 2011 level. Data are from World Bank (2021).
2 The village was the lowest-level administrative unit in the 2001 census of India. Villages
are composed of “habitations” (or “hamlets”), which correspond to distinct inhabited ar-
eas within a village. South Asian villages typically have one or more inhabited regions sur-
rounded by agricultural land. India’s 600,000 villages contain approximately 1.6 million
unique habitations.

3 These two estimates are internally consistent, as the average electrified village in this
setting received under 11 hours per day of commercial power supply.
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increases in satellite-derived nighttime brightness at the village level, using
both our cross-sectional RD design and a DD event-studymodel. These re-
sults tell a consistent story: while RGGVY fell short of achieving “full elec-
trification,” it succeeded in meaningfully expanding electricity access
and consumption in rural India.4 However, despite these gains in electrifi-
cation, we find that RGGVY led to at most modest changes in economic
outcomes. We can reject intent-to-treat effects on our preferred outcome,
per capita consumption expenditure, greater than 2% of the mean using
our RD strategy and 8% of the mean using our DD approach.
Next, we rescale our estimates of RGGVY’s impacts via instrumental var-

iables (IVs), in order to estimate the effects of rural electrification more
broadly. Using a fuzzy RD design, we estimate statistically insignificant de-
creases in per capita expenditure as a result of “full electrification” in vil-
lages with close to 300 people. Using a DD-IV design, we also find statistically
insignificant decreases in per capita expenditure from “full electrification”
for smaller villages (median of 1,043 people). We can reject expenditure
increases greater than 26% (fuzzy RD) and 30% (DD-IV) in smaller villages.
On the otherhand, in larger villages (median of 2,076 people), ourDD-IV
design cannot reject a tripling of per capita expenditure due to “full
electrification.” We see suggestive evidence that these results may be
driven by structural transformation: we find evidence of firm growth only
in larger villages.
Finally, we use our estimates to conduct a welfare analysis. We compute

the 20-year returns from rural electrification using two strategies for quan-
tifying benefits: (i) our fuzzy RD and DD-IV per capita expenditure esti-
mates and (ii) consumer surplus from household electricity consumption.5

Both strategies imply that “full electrification” is benefit-cost negative in
small villages and benefit-cost positive in large villages. For 300-person
villages, we calculate a 0% internal rate of return (IRR), which is welfare
reducing under any time discounting. For 1,000-person villages, our 13%
IRR just exceeds a standard 10%–12% benchmark for cost-effectiveness.
For 2,000-person villages, our 33% IRR far exceeds this benchmark, re-
flecting both greater per capita benefits in larger villages and economies
of scale in costs. These results help to reconcile divergent estimates from
the literature—electrification reduces welfare in small villages and in-
creases welfare in larger communities.
This paper makes three key contributions. First, we provide new evi-

dence on the economic impacts of rural electrification from across In-
dia—home to the world’s largest unelectrified population during our
4 These findings align with Indian policy reports on RGGVY (e.g., Sreekumar and Dixit
2011; PEO 2014; Josey and Sreekumar 2015).

5 Throughout this paper, we use the term “welfare” to refer to the benefits of electrifi-
cation minus its costs. If a reader prefers not to take a stand on a particular social welfare
function, they may interpret our results in terms of the “social surplus” of electrification.
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sample period. Our estimates leverage policy variation from a flagship
electrification program; they come from thousands of villages and hun-
dreds of districts, in a setting with income levels comparable to those on
today’s electrification frontier.
Second, we add to the knowledge on the causal effects of infrastructure

in developing countries. Whereas existing research has tended to find
large positive impacts of infrastructure investments, our results indicate
that “last-mile” infrastructure projects may be less likely to spur economic
growth.6 Third, we contribute to a growing literature on electricity in the
developing world, with our finding of heterogeneous impacts of multi-
sector (residential and nonresidential) electrification.7 Our results speak
to two hypotheses proposed by Lee, Miguel, andWolfram (2020a): (i) that
the benefits of electrification vary across local economic settings, which we
characterize in terms of heterogeneous village size, and (ii) that house-
hold electrification alone may be insufficient for economic gains. Even
though RGGVY expanded access beyond the residential sector, we find
that electrifying small villages reduces welfare.Wefind positive welfare im-
pacts in larger villages, accompanied by suggestive evidence of structural
transformation.
II. The RGGVY Electrification Program
Upon its independence in 1947, only 1,500 of India’s villages had access to
electricity (Tsujita 2014). By 2004, after decades of electrification efforts,
over 125,000 rural villages still lacked power access. In the remaining
467,000 villages, electrification was often extremely limited, with 57% of
all rural households lacking grid connections.8 In 2005, the national
government launched the flagship RGGVY program, which sought to
6 For example, Donaldson (2018) finds that early railroad investments increased real in-
comes in India, and Faber (2014) finds that highway infrastructure investments led to po-
tentially large aggregate efficiency improvements in China. Conversely, Asher and Novosad
(2020) do not detect meaningful economic impacts from PMGSY (Pradhan Mantri Gram
Sadak Yojana), India’s “last-mile” rural road construction program.

7 Several papers highlight heterogeneity at the intersection of electricity and economic
development. For example, Gertler et al. (2016) find that income levels are a key driver of
energy demand in Mexico; Allcott, Collard-Wexler, and O’Connell (2016) shows that gen-
erator ownership determines firms’ responses to power outages in India; and Ryan (2020)
and Mahadevan (forthcoming) present evidence on disparate treatment of politically con-
nected firms and individuals in energy contracts and power supply, respectively.

8 Grid power is not the only source of electricity in rural villages. Data from a 2015
household survey report off-grid electricity access from microgrids, solar home systems,
and diesel generators (Aklin et al. 2016). In 2013, households in Bihar could access off-grid
electricity from diesel generators, solar microgrids, or their own solar systems (Burgess
et al. 2023). However, off-grid solar access was extremely limited before 2012 (Lighting
Global and GOGLA 2017), leaving diesel generators as the main alternative power source
during our sample period.
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(i) connect over 100,000 unelectrified rural villages and (ii)more intensively
electrify over 300,000 “underelectrified” villages.9

RGGVY had a dual mandate to install electricity infrastructure to
support village economies and connect unelectrified households. Infra-
structure investments—transmission lines, distribution lines, and trans-
formers—aimed to “facilitate overall rural development, employment gen-
eration, and poverty alleviation” by supporting electric irrigation pumps,
microenterprises, and small-to-medium industries (Ministry of Power
2005). New infrastructure also extended the grid to public places such
as schools, health clinics, and local government offices. To increase resi-
dential power access, RGGVYwas charged with providing free grid connec-
tions to below-poverty-line households.10 RGGVY targeted both the exten-
sive and intensive margins, connecting new villages to the grid while also
upgrading existing infrastructure and connecting additional households
in villages with some degree of electrification before 2005.
In order to receive RGGVY funding, states submitted Detailed Project

Reports (DPRs) to the central government, based on village-level surveys
conducted by local electricity utilities. Each DPR proposed a village-by-
village implementation plan for a particular district, including specific in-
frastructure to be installed and the number of households to be connected.
The Rural Electrification Corporation (overseen by theMinistry of Power)
reviewed DPRs, approved projects, and disbursed funds to states. By 2011,
RGGVY had provided over Rs 253 billion (US$5.45 billion) in funds and
connected 17.5 million households to the grid—roughly one in five previ-
ously unelectrified rural households in India (Sreekumar and Dixit 2011).
RGGVY’s setting is also instructive about ongoing electrification efforts:
figure 1 shows that India’s 2011 GDP per capita is comparable to the
2018 GDP per capita in countries where a substantial share of the popula-
tion remains unelectrified today.
Two features of RGGVY’s implementation facilitate our empirical anal-

ysis. First, DPRs were funded under India’s Five-Year Plans, and districts
were sorted first-come-first-served into two waves. The first wave (229 dis-
tricts) were authorized under the 10th Plan and received funding between
2005 and 2008. The second group (331 districts) were authorized under
the 11th Plan and received funds between 2008 and 2011. Approximately
164,000 (267,000) villages and 7.5 million (14.6 million) below-poverty-
line households were slated for electrification under the 10th (11th)
Plan. Figure 2 maps districts according to their Five-Year Plan; 23 of
9 RGGVY translates to “The Prime Minister’s Rural Electrification Plan.” It was subse-
quently subsumed into Deendayal Upadhyaya Gram Jyoti Yojana (DDUGJY), the scheme
launched in 2015 with the goal of providing continuous 24 � 7 power to all of rural India.

10 Above-poverty-line households were able to purchase connections. RGGVY did not al-
ter electricity prices, but Indian retail electricity tariffs are heavily subsidized (Burgess et al.
2020). In 2010, the median rural tariff was 2.64 rupees (Rs; US$0.05) per kilowatt-hour.
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27 states contain both 10th- and 11th-Plan districts. We leverage this stag-
gered rollout to estimate the impacts of electrification, comparing 10th-
and 11th-Plan districts in a DD design.
Second, RGGVY determined village eligibility using the populations of

subvillage “habitations” (i.e., neighborhoods). Under the 10th Plan, only
villages with constituent habitations larger than 300 people were eligible
for electrification.We use an RDdesign to identify local average treatment
effects (LATEs) of electrification at this 300-person cutoff, comparing
barely ineligible to barely eligible villages in 10th-Plan districts.11 The RD
and DD designs are complementary: our RD analysis uses weaker identify-
ing assumptions and village-level variation but estimates effects local to the
300-person cutoff; our DD analysis requires stronger identifying assump-
tions using district-level variation but can estimate effects for villages of
all sizes, inclusive of within-district spillovers.
FIG. 2.—Indian districts by RGGVY implementation phase. We shade 2001 districts by
RGGVY coverage status. Dark districts were covered under the 10th Plan (RGGVY’s first
wave), light districts were covered under the 11th Plan (RGGVY’s second wave), cross-
hatched districts were covered under both the 10th and 11th Plans, and white districts were
not covered by RGGVY. In 2001, India had 584 districts across its 28 states and seven union
territories. RGGVY covered 530 total districts in 27 states (neither Goa nor the union ter-
ritories were eligible); 30 districts were split between the 10th and 11th Plans; 23 states con-
tain both 10th- and 11th-Plan districts.
11 Under the 11th Plan, this threshold was decreased to 100 people. Because of the lim-
ited density of sub-100-person villages, we restrict our RD analysis to the 300-person cutoff
in 10th-Plan districts. Focusing on RGGVY’s earlier wave also lets us estimate economic im-
pacts over a longer timescale of 3–5 years.
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III. Empirical Strategy

A. RD Design
We estimate a sharp RD design using RGGVY’s 300-person cutoff, where a
village’s eligibility for treatment switches from 0 to 1 as the running vari-
able crosses 300. This running variable is technically the habitation popu-
lation, since the 300-person cutoff applied at the subvillage level. Because
data on subvillage population counts are unavailable, we restrict our RD
sample to villages comprising exactly one habitation. For this 50% subset
of villages, the village population is equivalent to the habitation popula-
tion. This lets us use village population as a running variable to estimate
the effects of RGGVY eligibility for single-habitation villages in 10th-Plan
districts with populations close to 300.12

Our RD design necessitates two key identifying assumptions. First, we
must assume continuity across the RD threshold for all village covariates
and unobservables that might be correlated with our outcome variables.
While this assumption is fundamentally untestable, pre-RGGVY village-
level covariates appear to be smooth across the 300-person cutoff (see
app. B.3; apps. A–C are available online). We are also unaware of any other
Indian social program that uses 300 people as a salient criterion.13 Second,
we assume that our running variable is notmanipulable around the thresh-
old. This assumption almost certainly holds, as program eligibility was con-
tingent on populations from the 2001 census, enumerated 4 years before
RGGVY’s announcement in 2005. Figure 3 shows no evidence of bunching
at the 300-person cutoff.
Under these assumptions, the following RD specification estimates the

causal impact of RGGVY eligibility for villages with close to 300 people:

Yv 5 b0 1 b1Zv 1 b2ðPv 2 300Þ 1 b3ðPv 2 300Þ � Zv 1 vXv 1 hs 1 εv

for Pv ∈ ½300 2 h, 300 1 h�, where Zv ; 1½Pv ≥ 300�,
(1)

Yv represents the outcome of interest in village v, Pv is the 2001 village
population (the RD running variable), and Zv is an indicator denoting
RGGVY eligibility. To increase precision, we control for pre-RGGVY
village-level covariates in Xv, including the lagged outcome variable (where
possible). We also include state fixed effects hs. We implement equa-
tion (1) using the rdrobust framework developed by Calonico, Cattaneo,
12 Our RD design is not suited for multihabitation villages, where the village population
does not correspond to the habitation populations used to determine RGGVY eligibility.
Panel A of table 1 shows that, within the neighborhood of the RD population threshold,
single-habitation villages are similar to other villages in 10th-Plan districts on average.

13 Other Indian programs use population-based eligibility thresholds, including the
PMGSY road construction program studied in Asher and Novosad (2020). PMGSY used
1,000- and 500-person cutoffs.
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and Titiunik (2014). Following the standard rdrobust procedures, we
apply a triangular weighting kernel in distance from the RD cutoff, cal-
culate MSE (mean squared error)-optimal RD bandwidths h, and use
heteroskedasticity-robust nearest-neighbor standard errors.14

This sharp RD design estimates the impacts of eligibility for the RGGVY
program local to the 300-person cutoff. We use an analogous fuzzy RD
design to estimate the impacts of electrification, instrumenting for village-
level electricity access using the 300-person eligibility indicator. This trans-
forms our intent-to-treat RD estimates into LATEs that enable us to ap-
proximate a “full-electrification” program.15
B. DD Design
We complement our RD design with a DD analysis that leverages RGGVY’s
phased rollout.OurDDcompares “treated” 10th-Plan districts (RGGVY’s first
wave) to a “control group” comprising both 11th-Plan districts (RGGVY’s
second wave) and non-RGGVY districts.16 Using district-level variation,
this DD design lets us study villages of all sizes, incorporate district-level
FIG. 3.—Density of RD running variable. The left-hand histogram shows village popula-
tions for 2001 (dark) and 2011 (light), top-coding each distribution at 4,000. The right-
hand histogram zooms in on villages close to RGGVY’s 300-person population cutoff, with
2001 populations between 150 and 450 (slightly wider than our optimal RD bandwidths).
Dark bars show the sample of single-habitation 10th-Plan villages used in our RD analysis,
relative to all Indian villages (white) and all villages in 10th-Plan districts (light gray).
14 The MSE-optimal bandwidth procedure computes a separate h for each outcome vari-
ableYv, followingCalonico, Cattaneo, and Farrell (2018).We present rdrobust sensitivity anal-
ysis for alternative kernels, bandwidths, controls, functional forms, and standard errors in
figs. B1 and B2 and tables B1–B3 (figs. A1–C6 and tables A1–C5 are available online).

15 Scaling upour intent-to-treat RDestimates also accounts for potential noncompliancewith
the 300-person eligibility rule. We implement fuzzy RD using the same rdrobust framework.

16 Thirty-seven districts in our control group had no RGGVY projects. We assign the 30 dis-
tricts with RGGVY projects in both plans to the “treated” group. Our DD results are robust to
dropping all 67 of these districts (see table B9).
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outcome data, and capture within-district spillovers and general equilib-
rium effects.
Our main DD specification is

Ydt 5 g1½10th Plan�d � 1½Post-2005�t 1 hd 1 dt 1 vdt 1 εdt , (2)

where Ydt is an outcome variable for district d in year t. The coefficient g
captures the differential impact of RGGVY eligibility after 10th-Plan dis-
tricts began receiving treatment in 2005, controlling for district fixed effects
hd and year fixed effects dt. To account for potential selection of districts
into RGGVY’s first wave, vdt includes three sets of linear trends: (i) trends
grouping districts within each state by quartiles of 2005 household expen-
ditures, in case states prioritized electrifying poorer districts; (ii) trends
grouping districts by national deciles of 2005 household expenditures,
in case such selection existed in absolute terms across states; and (iii) state-
specific trends. Our DD identifying assumption is that, after these trends
are controlled for, 10th- and 11th-Plan districts would have continued on
parallel counterfactual trajectories absent RGGVY. We fail to reject paral-
lel trends before RGGVY.17

Equation (2) estimates the impacts of the RGGVYprogram over the full
support of village populations. This DD approach complements our RD
design, which estimates effects for 300-person villages. To estimate the im-
pacts of electrification, we use the analogous DD-IV model, instrument-
ing for electricity access via the 1½10th Plan�d � 1½Post-2005�t interaction.
This scales our intent-to-treat effects to account for the fact that RGGVY
did not bring new electricity connections to every household. Since RGGVY
prohibited hiring local workers, and since our end-line data were collected
several years after most 10th-Plan projects, we are confident in the exclu-
sion restriction that RGGVY eligibility affected economic outcomes only
through the program itself.18
IV. Data
We use village-level data from the 2001 and 2011 censuses of India. The
2001 village population serves as our RD running variable, and we isolate
the subset of single-habitation villages by matching villages to a separate
17 See table 1, fig. 6, and tables B7 and B8. After including state-specific trends, our
pretrend estimates are all statistically indistinguishable from zero, except for TVownership
(which, if anything, suggests that 10th-Plan districts were trending away from TVownership
relative to 11th-Plan districts). For outcome variables with village-level granularity or an-
nual frequency, we modify eq. (2) to include village fixed effects or multiple event-study
g coefficients.

18 Any exclusion restriction violation would involve a time-varying unobservable corre-
lated with both economic outcomes and our instrument but not captured by household
electricity access.
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census of habitations.19 We observe village-level electricity access in the
2011 census, which reports (i) dummies for the village’s first grid connec-
tion in the domestic, agricultural, and commercial sectors; (ii) average
hours per day of gridpower supplied to each sector; and (iii) averagehours
per day of gridpower supplied to all three sectors. The census alsoprovides
a range of village-level economic outcome variables, including demo-
graphics, employment by gender and sector, household characteristics, as-
set ownership, and community-wide amenities.
We also incorporate data froma low-income subset of the 2011 Socioeco-

nomic and Case Census (SECC). We observe income and wealth variables
for this subset of households, and we also use the subset to reconstruct the
share of poor households in each village.20 Using the full (unrestricted)
2011 SECC, the Socioeconomic High-resolution Rural-Urban Geographic
Dataset for India (SHRUG)estimates consumption expenditure per capita
at the village level (Asher and Novosad 2020; Asher et al. 2021).21 We use
SHRUG expenditure per capita as our preferred village-level outcome var-
iable for quantifying the impacts of electrification on economic well-being.
We use administrative microdata from two additional sources. The Eco-

nomic Census surveys all nonfarm establishments, which we use to con-
struct counts of firms and firm employees in each village in 1990, 1998,
2005, and 2013.22 The District Information System on Education (DISE)
provides student enrollment and pass rates for all Indian primary and
upper primary schools from 2005 to 2014.23 Panel A of table 1 reports pre-
RGGVY summary statistics at the village level; our RD sample of single-
habitation 10th-Plan villages appears quite similar to the universe of vil-
lages with populations between 150 and 450.
While census variables capture the extensive margin of village electricity

access, we use satellite images of nighttime brightness to captures intensive-
margin gains in electrification. The National Oceanic and Atmospheric
Administration (NOAA) publishes annual composite images that report
19 Official RGGVY ledgers we observed in Rajasthan were preprinted with 2001 census
populations. The National Rural Drinking Water Programme conducted habitation cen-
suses in 2003 and 2009. We link these data to census villages by modifying a fuzzy matching
algorithm from Asher and Novosad (2020). Appendix C.5 describes this matching algo-
rithm; app. C.4 discusses the census data in further detail.

20 Though the SECC enumerated the full population, we observe only households that
met at least one of seven poverty indicators and none of 14 affluence indicators. See
app. C.7 for further details.

21 SHRUG constructs village-level expenditure by combining 2011 SECCmicrodata with
data from the Indian Human Development Survey (2011–12). To our knowledge, this is
the only dataset of per capita expenditure that covers all Indian villages. See app. C.6
for further details.

22 This includes informal firms and public sector employers, as we discuss in app. C.8.
23 DISE data include 1.68 million unique schools, and previous research has used them

to measure student achievement (Adukia, Asher, and Novosad 2020). Appendix C.9 de-
scribes these data in detail.



TABLE 1
Summary Statistics before RGGVY

(1) (2) (3)

A. Village-Level Covariates,
Population 150–450

All Districts 10th-Plan Districts RD Sample

Agricultural workers/population (2001) .39 .37 .40
(.16) (.16) (.15)

Nonagricultural workers/population (2001) .06 .06 .06
(.08) (.08) (.08)

Number of firms in village (2005) 7.32 6.81 7.60
(11.30) (10.78) (12.23)

Literacy rate (2001) .45 .44 .45
(.18) (.17) (.17)

School enrollment (2005–6 head count) 87.71 91.61 71.25
(188.18) (140.95) (115.25)

Electric access anywhere in village (2001) .68 .62 .67
(.46) (.49) (.47)

Distance to nearest town (km) 27.72 24.69 23.81
(27.67) (25.98) (22.99)

Number of villages 129,438 62,638 18,686

B. District-Level Covariates, 2005 NSS

10th-Plan
Districts

11th-Plan
Districts

Pretrend
Estimates

Expenditure per capita (Rs/month) 869.87 988.00 14.577
(231.73) (371.21) [20.719]

Share of HHs consuming any electricity .46 .66 2.015
(.31) (.28) [.016]

Share of HHs with electric lighting .46 .67 2.018
(.32) (.28) [.016]

Share of HHs with electric fan .28 .42 2.019
(.22) (.29) [.017]

Share of HHs with TV .20 .30 2.025**
(.14) (.20) [.012]

Share of HHs with refrigerator .02 .07 2.004
(.05) (.11) [.004]

Share of HHs with air conditioning .03 .04 2.006
(.05) (.09) [.005]

Number of districts 229 332
Note.—Panel A reports means and standard deviations of village-level covariates from
the 2001 census, the 2005 Economic Census, and 2005–6 DISE school data. All three col-
umns include only villages with 2001 populations between 150 and 450, which is slightly
wider than our optimal RD bandwidths. Column 2 includes districts in the first wave of
RGGVY implementation. Column 3 further restricts the sample to single-habitation vil-
lages in 10th-Plan districts, in states with reliable village shapefiles. Panel B reports
district-level means and standard deviations for 10th- versus 11th-Plan districts using the
2005 NSS (representative at the household [HH] level). Column 3 reports district-level
pretrend estimates using 2000 and 2005 NSS data, comparing the 10th and 11th Plans,
2005 vs. 2000 (including state-specific linear trends; standard errors are in brackets). Ta-
bles B7 and B8 report these regression results in full.
** p < .05.
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light intensity, on a 0–63 scale, at approximately 1-km2 resolution. We con-
struct a yearly brightness panel by assigning each village the maximum
brightness over all pixels in its shapefile polygon.24 We are unable to con-
struct village-level brightness in 10 states for which 2001 village shapefiles
are unavailable or unreliable.25 We exclude these states from our RD anal-
ysis in order to control for pre-RGGVY brightness at the village level, which
is important for statistical power; our DD analysis includes these 10 states,
since fixed effects subsume baseline controls (see eq. [2]).
Satellite-derived brightness proxies for electrification in small villages, as

it is proportional to observed luminosity from electric lighting (Chen and
Nordhaus 2011).26 These data capture lighting consumption from all users
(including households and enterprises), providing a lower bound for total
power consumption—electric groundwater pumps share the same power
grid but donot emit light. They also capture power fromall sources,mean-
ing that any estimated brightness effects are net of substitution between
off-grid and grid power. One caveat is that these data cannot distinguish
between changes in street lighting and broader gains in electricity access.
However, RGGVY did not install streetlights in the 10th Plan. Therefore,
any RGGVY-driven increases in nighttime brightness are likely to reflect
village-wide expansions in access to energy services.
Finally, we construct a repeated cross section from the “thick” 2000,

2005, and 2010 waves of India’s National Sample Survey (NSS). Each wave
surveyed 60,000–80,000 rural households, with sampling weights that are
representative at the district level. While NSS data lack the village identifi-
ers required for our RD analysis, they directly report household-level elec-
tricity consumption, appliance ownership, and total expenditure.27We col-
lapse these data into a three-wave district-level panel, which we use in our
DD analysis.We use twoNSSmeasures of rural electricity access: (i) the share
of households consuming any electricity and (ii) monthly kilowatt-hours
24 Indian villages are organized into central clusters of households surrounded by agri-
cultural fields. Assigning villages their maximum brightness targets our electricity proxy on
populated areas, rather than unlit cropland. We remove year-specific measurement error
in brightness via linear projection, while also dropping a few extreme outliers. Appen-
dix C.3 provides further detail on our nighttime brightness data.

25 Shapefiles are unavailable for Arunachal Pradesh, Meghalaya, Mizoram, Nagaland,
and Sikkim. For Assam, Himachal Pradesh, Jammu and Kashmir, Uttar Pradesh, and
Uttarakhand, available shapefile polygon areas are uncorrelated with village areas reported
in the 2001 census. Our remaining sample states contain 60% of 10th-Plan RGGVY villages.
See app. C.2 for further discussion.

26 Several remote-sensing studies have ground-truthed the relationship between nighttime
brightness and electrification in villages in India (Min 2011), SouthAfrica (Machemedze et al.
2017), Vietnam (Min and Gaba 2014), and Senegal and Mali (Min et al. 2013).

27 NSS electricity consumption data capture all power purchases, including both grid
and off-grid sources (e.g., kilowatt-hours purchased from local diesel generator operators).
A separate NSS variable reports diesel and petrol purchases for the purpose of self-generation
(distinct from fuels purchased for transportation). We find no statistical evidence that
RGGVY crowded out self-generated electricity (see table A11).
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consumed by the representative household. Our primary NSS outcome
variable is monthly expenditure per capita, which aligns with SHRUG’s
village-level expenditure variable. This follows a tradition of using con-
sumption spending to approximate well-being in development economics.28

Panel B of table 1 reports NSS summary statistics before RGGVY, compar-
ing 10th- and 11th-Plan districts.
V. Impacts of RGGVY

A. First Stage: Electricity Access and Consumption
Village-level electricity access.—Using our RD strategy, we estimate RGGVY’s
impact on two sets of electricity outcomes from the 2011 census: (i) dum-
mies for a village’s first grid connection to an end-use sector and (ii) aver-
age hours per day of power supply by sector. Table 2 reports RD estimates
TABLE 2
Village-Level RD in 2011 Electricity Access, by Sector

Outcome: Village-level electricity access

Domestic Agricultural Commercial All 3 Sectors
(1) (2) (3) (4)

A. Dummy for Any Power Access

1[2001 population ≥ 300] 2.004 2.001 .043*** .038**
(.010) (.020) (.017) (.016)

Mean of dependent variable (<300) .906 .669 .436 .417
Optimal bandwidth 108 78 136 150
Village observations 13,517 9,836 16,900 18,574

B. Hours/Day of Power Supply

1[2001 population ≥ 300] 2.042 2.252 .555** .283
(.207) (.257) (.220) (.240)

Mean of dependent variable (<300) 11.386 5.382 3.957 5.050
Optimal bandwidth 88 82 126 117
Village observations 9,284 8,575 12,897 14,336
28 Examples include Banerjee et a
(2010), and Atkin et al. (2024). The la
variable. Appendix C.11 provides mo
l. (2015), H
tter two pa
re details.
aushofer and
pers both use
Shapiro (201
this same NSS
Note.—All estimates, computed using rdrobust, use linear polynomials, triangular kernels,
MSE-optimal bandwidth, and nearest-neighbor standard errors. Regression samples include
within-bandwidth single-habitation villages in RGGVY 10th-Plan districts (i.e., the first wave of
RGGVY project implementation, for which 300 people is the relevant 2001 population-based
eligibility cutoff). Each regression controls for pre-2005 nighttime brightness at the village level
and state fixed effects. Optimal bandwidths are symmetric above and below the 300-person cut-
off, and we report means of the dependent variable for villages below the cutoff. In panel A,
outcomes are dummy variables for electricity access at the village level. In panel B, outcomes
are the average hours of power available per day in the village. Results are robust to alterna-
tive controls, kernels, bandwidth algorithms, and standard errors.
** p < .05.
*** p < .01.
6), Topalova
expenditure
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for 300-person villages, and figure 4 presents the corresponding RD
plots.29 We find that RGGVY eligibility caused a 3.8-pp increase in the
share of villages reporting all-sector electricity access—a 9% increase over
the baselinemean, statistically significant at the 5% level. This is driven by
a 4.3-pp (10%) increase in commercial power access, statistically signifi-
cant at the 1% level. We find no impacts on the extensive margin of do-
mestic (20.4 pp) or agricultural (20.1 pp) power access. This is consistent
with RGGVY’s emphasis on more intensively electrifying villages where
the first household already had a grid connection. By contrast, the pro-
gram’s goal to support microenterprises appears to have connected 1 in
13 barely eligible villages that previously lacked any commercial power
access.30

We find that RGGVY eligibility increased commercial power supply by
0.56 hours per day (14%), statistically significant at the 1% level. This
intensive-margin increase implies that newly connected villages received
FIG. 4.—Village-level RDs in 2011 electricity access. A and B correspond to column 3 of
table 2. C and D correspond to column 4 of table 2. See table notes for details. Figure A4
displays RD plots corresponding to the other four regressions in table 2.
29 FigureA4 shows RD plots for the domestic and agricultural sectors, omitted here for brev-
ity. Table A1 presents “difference-in-discontinuities” results, which are quantitatively similar.

30 With 44% of barely ineligible villages having commercial power access, the maximum
increase we could estimate would be 56 pp. Our null effects for domestic access are unsur-
prising, given that 91% of barely ineligible villages had domestic power.
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13 hours per day of commercial power supply, above the median of
10 hours per day for electrified villages in our RD sample. We do not detect
a similar increase in hours of all-sector power supply, which likely reflects
noncoincident consumption patterns across electricity end uses (Bur-
gess et al. 2023). Table A2 uses our DD strategy to estimate impacts on
village-level power access beyond the RD bandwidth. This reveals a
near-identical effect (3.7 pp) on all-sector power access, with larger in-
creases for the domestic (8.1 pp) and agricultural (5.2 pp) sectors. As
further evidence of RGGVY’s impact on households, we estimate a 3.7-pp
increase in the share of households using electricity as a main source of
lighting, applying our RD strategy to 10th-Plan districts with high RGGVY
treatment intensity (see table A13).31

Nighttime brightness.—Figure 5 presents RD estimates of the effect of
RGGVY eligibility on nighttime brightness. We find null results before
RGGVY’s 2005 announcement, consistent with our RD assumption of
baseline covariate smoothness.32 Our RD estimates increase almost mono-
tonically each year thereafter and are statistically different from zero by
2008. By 2012, 4–6 years after 10th-Plan districts received funding,
RGGVYeligibility had increased brightness by 0.25 units at the 300-person
FIG. 5.—Village-level RD estimates in nighttime brightness, by year. This figure plots RD
coefficients for maximum nighttime brightness at the village level. We estimate a separate
regression for each year, with rdrobust specifications identical to those in table 2. Each re-
gression controls for pre-2005 brightness at the village level; 2002–5 regressions control for
brightness in years preceding the outcome variable. Optimal bandwidths for these regres-
sions range from 69 to 143. Results are robust to alternative controls, kernels, bandwidth
algorithms, and standard errors. See the table 2 note for details. Tables A10 and B5 report
these results numerically. Whiskers display 95% confidence intervals (CIs).
31 We discuss this analysis of heterogeneous treatment intensity in sec. VI.B below.
32 Figures A5 and B6 present the corresponding RD plots. Tables A10 and B5 report

these results numerically. We find similar results if we estimate a single “difference-in-
discontinuities” regression, rather than separate regressions for each year (see fig. A1).
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cutoff (statistically significant at the 1% level). Yearly brightness data also
allow us to estimate DD event studies, where treatment turns on in the
year district d first received RGGVY funds. Figure 6 reports these results,
which align with our RD findings: 4–5 years after RGGVY project funding,
average village brightness had differentially increased by 0.18–0.37 units.33

As with our RD results, our event studies find no evidence of differential
brightness before RGGVY treatment.
To interpret these effect sizes, we use estimates from the remote-sensing

literature that ground-truth the relationship between rural electrification
and nighttime brightness. Min et al. (2013) find that electrification is asso-
ciated with a 0.36-unit increase in brightness in rural villages in Senegal.
Min andGaba (2014) find that a 1-unit increase in brightness corresponds
to 60 public streetlights or 240–270 electrified homes in Vietnamese villages.
Finally, Machemedze et al. (2017) find that connecting 50 South African
homes to the grid is associated with a 0.35-unit brightness increase. In the
context of these estimates, our results suggest that RGGVY caused meaning-
ful on-the-ground increases in electricity use: a 0.25-unit brightness increase
is associated with a roughly 10-pp increase in the share of households with
electric lighting, net of any substitution away from off-grid power sources.34
FIG. 6.—Village-level DD event studies using annual nighttime brightness from 1998 to
2013. The outcome variable is maximum brightness in each year, for each village polygon.
In A, treatment (RGGVY eligibility) turns on in the year when each 10th-Plan district first
received RGGVY project funds, using 11th-Plan districts as controls. In B, treatment turns
on for both 10th- and 11th-Plan districts, in the first year the district received RGGVY
funds. The 10th-Plan districts first received funds in 2005–7, while 11th-Plan districts first
received funds in 2008–11. In both panels, the omitted year is the last year before a dis-
trict’s first receipt of funds. Regressions include village fixed effects, state-by-year fixed
effects, and village-specific linear time trends. Estimation samples include 10th- and
11th-Plan districts in states with reliable shapefiles, without restricting village size. Whiskers
display 95% confidence intervals (CIs), with standard errors clustered by census block.
33 This leverages both RGGVY’s staggered rollout across the 10th and 11th Plans and the
staggered timingofDPR fundingwithin eachplan, lettingus captureRGGVY’s delayed impacts
in 11th-Plan “control” districts (fig. 6B). Table A4 reports analogous pooled DD estimates.

34 See fig. A14, which also shows that a village’s nighttime brightness is positively corre-
lated with its hours per day of commercial power supply. Our nighttime brightness effects
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Household electrification.—Using our DD design with NSS data, we can
directly estimate RGGVY’s impacts on households. Table 3 presents these
results. We find a 5.6-pp increase on the extensive margin of household
electricity consumption (statistically significant at the 1% level); this
intent-to-treat effect implies a 9% increase in household grid connections.
We also find increases on the intensive margin of household electricity
consumption, with intent-to-treat effects of 4 kWh per month (13%, sta-
tistically significant at the 5% level). We find corresponding increases of
4.9 pp (8%) in electric lighting and 4.5 pp (11%) in electric fan adoption
but null effects for more expensive appliances.35

These NSS estimates corroborate our village-level RD results and dem-
onstrate that RGGVY had a meaningful impact on household electricity
consumption. Our 5.6-pp extensive-margin estimate implies that RGGVY
connected 14% of previously unelectrified households in 10th-Plan dis-
tricts.36 Our 4-kWh intensive-margin estimate is consistent with moving
all newly connected households from 0 kWh to (above) the mean con-
sumption level of electrified households. Our results also confirm that
RGGVY fell short of full electrification. Since our first-stage estimates are
robust and statistically precise, we can scale up RGGVY program impacts
to estimate the effects of electrification on development outcomes.
First-stage robustness.—Figures B1 and B2 show that our first-stage RD re-

sults are broadly robust to alternative weighting kernels, bandwidth algo-
rithms, standard errors, fixed effects, polynomials, and sample criteria.
While a few sensitivities reduce statistical precision (for all-sector power ac-
cess, in particular), our RD point estimates are stable across these variants.
We also conduct RD falsification tests using samples of (i) 11th-Plan vil-
lages, for which the 300-person cutoff did not determineRGGVYeligibility,
and (ii) multihabitation villages, for which total village population is the
wrong running variable (since RGGVY’s eligibility threshold was based
on habitation population). Figures B3 and B4 reveal null effects for all
but the correct RD sample of 10th-Plan single-habitation villages.37
should reflect changes in power use across sectors of the village economy (including
households and shops that operate at night).

35 Table A5 repeats this DD analysis using the analogous census variables, finding a sim-
ilar 3.4-pp lighting effect. Our main DD specifications include state-specific trends, which
are fitted through our three NSS waves only. We find similar results when we remove these
trends (see table A6).

36 The 95% confidence interval for col. 2 of table 3 includes an 8.2-pp increase, which is
consistent with RGGVY having electrified one in five previously unconnected households
(Sreekumar and Dixit 2011).

37 Our RD results pass placebo tests that compare the correct 300-person cutoff to a dis-
tribution of randomly generated cutoffs (see fig. B5). Our NSS results pass an analogous
randomization test that scrambles the assignment of districts into the 10th-Plan “treated”
group (see fig. B9).
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B. Reduced Form: Economic Outcomes
Having established that RGGVY increased rural electrification, we per-
form a “program evaluation” by estimating local intent-to-treat effects
on a range of development outcomes. Table 4 reports these village-level
RD estimates, while figure 7 presents the corresponding RD plots for key
outcomes.38 We estimate precise null effects for our preferred economic
outcome, SHRUG expenditure per capita (table 4, panel A). We can re-
ject increases greater than Rs 29 per month (2% of mean expenditure).
We can also reject over-3-pp decreases in the share of households with a
poverty indicator and over-1-pp increases in the share of low-income
households with a salaried job. In panel B, we test for the Tiebout
(1956) “vote-with-their-feet” mechanism, by using 2011 population as an
TABLE 3
District-Level DD of Household Electricity Access and Usage

Household electricity

use (kWh/month)
1[Household Owns

Electric Appliance]

1[Q > 0] Levels Logs Lighting Fan TV Refrig. AC
(1) (2) (3) (4) (5) (6) (7) (8)

1[10th-Plan] �
1[2010] .056*** 3.95** .171** .049*** .045*** .010 .002 .007

(.014) (1.75) (.075) (.015) (.016) (.014) (.007) (.005)
Mean of dependent
variable .590 31.45 3.038 .598 .382 .289 .055 .038

Clusters 552 552 550 552 552 552 552 552
38 FiguresA10–A12
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Note.—District-level DDwith three NSS years (2000, 2005, 2010).We aggregate household-
level data up to the district, using sampling weights, for rural households only. Outcome
variables are an indicator for whether a household consumed any electricity (col. 1),
monthly household electricity consumption in levels and in natural logs (cols. 2–3), and
indicators for whether a household owned electric lighting, an electric fan, a television,
a refrigerator, or air conditioning (AC; cols. 4–8). DD treatment is assigned at the district
level, for 10th-Plan districts. All regressions include district fixed effects; year fixed effects;
state-specific linear trends; linear trends in state quartiles of 2005 household expenditures
per capita, to control for within-state selection in RGGVY implementation based on relative
differences between districts (e.g., states prioritizing electrification in their poorest districts);
and linear trends in national deciles of 2005 household expenditures per capita control for
such selection in absolute terms. Standard errors are clustered at the district level, collaps-
ing to a single cluster for (i) districts that split in the 2001 census but that the 2000 NSS sampled
on the basis of 1991 district definitions and (ii) the few cases where an RGGVY DPR included
multiple districts. For all columns, the number of observations is 1,670.
** p < .05.
*** p < .01.
brevity.
lterna-
vel out-
resents



2956 journal of political economy
RD outcome. While we find a positive point estimate of 6.2 people, we
can reject increases greater than 14 people (5%).
Panels B–E of table 4 present additional reduced-form RD results for

village demographics, employment, firms, and education. We find no sta-
tistical evidence that RGGVY eligibility caused nonzero impacts at the
300-person cutoff in any of these outcomes. Null results for firm and
TABLE 4
Village-Level RD: Reduced-Form Outcomes

RD
Estimate

Standard
Error

95% Confidence
Interval Mean Yv

A. Consumption and Income (2011)

Expenditure per capita (Rs/month) 25.222 (17.565) [239.649, 29.206] 1,365.353
Expenditure per capita (logged) 2.010 (.013) [2.034, .015] 9.668
Share HHs with poverty indicator 2.004 (.013) [2.030, .022] .547
Share HHs that rely on cultivation 2.007 (.012) [2.030, .016] .421
Share HHs earning >Rs 5,000/mo .002 (.009) [2.016, .020] .070
Share HHs with salaried job .004 (.003) [2.003, .010] .012

B. Village Demographics (2011)

Population 6.213 (3.874) [21.379, 13.805] 296.447
Share population age 0–6 .001 (.002) [2.002, .004] .141
Average HH size .024 (.024) [2.023, .072] 4.908

C. Workers as Share of Population (2011)

Agricultural workers:
Total 2.006 (.007) [2.019, .007] .399
Male 2.007 (.006) [2.018, .004] .465
Female 2.005 (.009) [2.024, .013] .329

Nonagricultural workers:
Total .004 (.003) [2.002, .011] .075
Male .004 (.004) [2.005, .013] .096
Female .005 (.004) [2.003, .013] .053

D. Firm Outcomes (2013)

No. of firms .812 (.716) [2.591, 2.214] 8.125
No. of firm employees 22.173 (4.620) [211.228, 6.882] 15.969

E. School Outcomes (2014–15 School Year)

No. of students enrolled:
Grades 1–5 3.086 (3.681) [24.128, 10.301] 46.417
Grades 6–8 21.949 (2.394) [26.642, 2.744] 10.314

No. of students enrolled:
Grades 4–5 2.438 (.510) [21.437, .561] 5.150
Grades 7–8 2.558 (.418) [21.378, .261] 1.469
Note.—Each row reports results from a separate RD regression. HH 5 household. In
panels B and C, we control for the 2001 level of the outcome variable. In panels D and
E, we control for the 2005 (or 2005–6) level of the outcome variable. RD-robust regressions
are otherwise identical to those in table 2. Optimal bandwidths range from 71 to 136
above/below 300 people. Results are broadly robust to alternative controls, kernels, band-
width algorithms, and standard errors. The rightmost column reports means of the out-
come variable for villages below the 300-person cutoff.
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education outcomes have the least precision, but these point estimates
still indicate relatively small effects.39

Table 5 presents reduced-form DD results for NSS per capita expendi-
ture.40 As with our SHRUG expenditure RD, we find precise null results.
For our point estimate of Rs 27 per month (3% of mean expenditure),
we can reject RGGVY-induced increases greater than Rs 75 per month
(8%) for the average household.
Taken together, our RD and DD results imply that while the RGGVY

program meaningfully increased electricity access and consumption, it
yielded far smaller short- to medium-run economic improvements than
promised by policy makers.41 To properly interpret these magnitudes,
FIG. 7.—Village-level RDs in expenditure, poverty, and population. RD plots correspond
to four regressions in table 4: rows 1–3 of panel A, and row 1 of panel B. See table notes for
details. Figures A10–A12 display RD plots for the other regressions in table 4.
39 We report the analogous DD estimates in table A23. They are broadly consistent with
our RD results in table 4, except for statistically significant increases in household size (but
not fertility) and school enrollment (not robust to a DD analysis that includes RGGVY’s
11th-Plan rollout).

40 Before aggregating total expenditures to the district level (using NSS sampling
weights), we subtract spending on electricity. Net expenditures are a more appropriate wel-
fare proxy, since they account for the benefits and the costs of consuming electricity.

41 For example, Ministry of Power (2013, 2) explains that “RGGVY was launched with the
objective that it would transform the quality of life in rural India and make possible the
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section VI rescales our estimates to quantify the benefits of “full electrifi-
cation” and conducts a welfare analysis by comparing these benefits to
the costs of electrification.
VI. Economic Impacts of Electrification
Next, we move beyond the RGGVY program to estimate the development
impacts of rural electrification more broadly. Since RGGVY did not elec-
trify all villages and rural households, it is possible that a more expansive
“full-electrification” program would have yielded more pronounced eco-
nomic impacts. To bridge this gap, we scale our reduced-form estimates
by our first-stage estimates of RGGVY’s impacts on electricity access and
consumption.
A. Rescaled Treatment Effects
We implement a village-level fuzzy RD using two endogenous treatment
variables: daily hours of commercial power supply and nighttime bright-
ness. For each treatment variable, we apply an additional scaling factor
in order to interpret the resulting estimates relative to a “full-electrification”
benchmark. We scale commercial power supply by 10 hours per day—the
median 2011 supply in villages with nonzero commercial access.42 This
TABLE 5
District-Level DD of Household Consumption Expenditures

Expenditure per capita (Rs/month)

Levels Logs
(1) (2)

1[10th-Plan] � 1[2010] 27.47 .029
(24.05) (.022)

Mean of dependent variable 978.15 6.833
Clusters 552 552
attainment of 8% economic growth and
of life.”

42 A 10-hour increase corresponds t
median power quality or to shifting a p
bridging the urban-rural gap

o providing new commercial c
reviously connected village fro
Note.—District-level DD with three NSS years (2000, 2005, 2010). The outcome variable
is total household expenditures per capita (net of electricity spending per capita) over the
30-day period before survey enumeration, in 2010 rupees per month (col. 1) and log trans-
formed (col. 2). Both regressions include district fixed effects, year fixed effects, state-
specific linear trends, linear trends in state quartiles of 2005 household expenditures
per capita, and linear trends in national deciles of 2005 household expenditures per cap-
ita. See table 3 note for further details. Standard errors are clustered at the district level, col-
lapsing to a single cluster for (i) districts that split in the 2001 census but that the 2000 NSS
sampled on the basis of 1991 district definitions and (ii) the few cases where an RGGVY DPR
included multiple districts. For all columns, the number of observations is 1,670.
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places a realistic limit on “full electrification” in a context where less than
5% of electrified villages received 24-hour power supply. We scale night-
time brightness by 2.6 units, corresponding to a shift from the 25th to
the 75th percentile of 2011 brightness in our RD sample.43

Table 6 presents fuzzy RD results for our preferred village-level out-
come, expenditure per capita. Panel A uses hours of commercial power
as an endogenous variable, and we find that 10 additional hours caused
a statistically insignificant decrease of Rs 222 per month. Panel B uses
nighttime brightness as the “treatment” variable, and we find that a 2.6-unit
brightness increase caused a statistically insignificant decrease of Rs 96 per
month. Both rescaled estimates yield similar upper confidence intervals:
we can reject LATEs greater than Rs 347 and Rs 359 per month (25% and
26%, respectively). These negative point estimates imply that “full electri-
fication” is unlikely to create large expenditure increases in 300-person vil-
lages in the short-to-medium term.44

Next, we scale up our reduced-form DD estimates using two-stage least
squares, instrumenting with whether each district belonged to RGGVY’s
10th Plan. Here, our endogenous NSS “treatment” variable is the share
of households consuming any electricity. We report these results in col-
umns 1 and 4 of table 7. Our statistically insignificant point estimate sug-
gests a per capita expenditure increase of Rs 316 per month (32%); we
cannot reject that a 100-pp increase in household connections would
double expenditures.45

These DD-IV estimates differ from our fuzzy RD LATEs, likely because
they average over villages of all sizes: the 50th- (90th-)percentile NSS vil-
lage had a population of 1,913 (6,854). To make our DD-IV and fuzzy RD
estimates more comparable, while also reflecting the reality of last-mile
electrification, we need to exclude very large villages from the NSS sam-
ple when scaling up to “full electrification.”46 We construct separate district-
level panels for quintile 1 (Q1) and quintiles 2–5 (Q25) of village sizes,
75th percentile of commercial power quality. Figure A13 presents this distribution (mean
of 10.9 hours, interquartile range of 9 hours).

43 Figure A13 presents this distribution of 2011 nighttime brightness for our RD sample
(mean of 6.2, interquartile range of 2.6). Figure A14 shows that nighttime brightness is
positively correlated with both the household penetration of electric lighting and hours
of commercial power at the village level.

44 Tables A30 and A31 report the analogous fuzzy RD results for the remaining outcomes
in table 4, all of which are statistically indistinguishable from zero.

45 While this F-statistic of 11.9 meets the F ≥ 10 “rule of thumb,” it is less than the Stock
and Yogo (2005) critical value of 16.74. Table B11 presents the analogous ordinary least
squares regressions (without instrumenting).

46 Compared to sub-500-person villages, villages with over 4,000 people were twice as
likely to have all-sector power access before RGGVY. Given greater preexisting power ac-
cess, large villages are also less externally valid for considering a 0–100-pp increase in
household connections (i.e., “full electrification”).
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proxying for population using village-level NSS sampling weights. Isolat-
ing Q1 villages (with small sampling weights) removes the vast majority
of villages over 4,000 people, shifting the NSS distribution toward smaller
villages with amedian population of 1,043.47 Q1 villages show large first-stage
TABLE 6
Fuzzy RD in Expenditure per Capita, Using Two Endogenous Variables

Expenditure per Capita (Rs/month)

Levels Logs
(1) (2)

A. Hours/Day of Commercial Power

Fuzzy RD point estimate 222.160 2.020
(29.019) (.021)

LATE for a 10-hour increase 2221.603 2.203
95% confidence interval for a
10-hour increase [2790.4, 347.2] [2.613, .208]

Mean of dependent variable (<300) 1,366.7 9.668
Optimal bandwidth 106 115
Village observations 10,402 11,240

B. Units of Nighttime Brightness

Fuzzy RD point estimate 236.900 2.054
(89.315) (.066)

LATE for a 2.6-unit increase 295.940 2.140
95% confidence interval for a
2.6-unit increase [2551.1, 359.2] [2.476, .496]

Mean of dependent variable (<300) 1,364.3 9.667
Optimal bandwidth 99 102
Village observations 11,716 12,045
47 Ideally, we would split the sample using
ulations for only the 2005 and 2010 NSS wa
retaining the 2000 NSS wave for statistical p
egy, which is explicitly proportional to villa
the 2005 and 2010 NSS waves, split by Q1
weights is an effective way of removing larg
village populations; howeve
ves. We prefer to split using
ower. This aligns with the NS
ge size. Figure C6 plots villa
vs. Q25, showing that spli

e villages from the sample.
Note.—Fuzzy RD robust estimates using two endogenous village-level “treatment” vari-
ables: 2011 average hours per day of commercial power in cols. 1–2 and 2011 nighttime
brightness in cols. 3–4. For hours of commercial power, we scale up by a factor of 10, the me-
dianof the 2011distributionof nonzerohours of commercial power in theRDbandwidth. For
nighttimebrightness, weuse a scaling factor of 2.6, equal to the interquartile rangeof the 2011
distribution of village-level brightness in the RD bandwidth. Both scaling factors denominate
LATEs for a village moving from the 25th to the 75th percentile of the “treatment” variable.
Outcomes variables are 2011 SHRUG consumption expenditures per capita in levels (Rs/
month) and logs. Each fuzzyRDuses a linear polynomial, a triangular kernel, anMSE-optimal
bandwidth, and nearest-neighbor standard errors. Regression samples include within-bandwidth
single-habitation villages in RGGVY 10th-Plan districts (i.e., the first wave of RGGVY imple-
mentation, for which 300 people is the relevant eligibility cutoff). Regressions control for
pre-2005 nighttime brightness at the village level and state fixed effects. Optimal bandwidths
are symmetric above and below the 300-person cutoff, and we reportmeans of the dependent
variable for villages below the cutoff. Results are robust to alternative controls, kernels, and
bandwidth algorithms.
r, we observe pop-
sampling weights,
S’s sampling strat-
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effects, consistent with smaller villages having had fewer household connec-
tions before RGGVY.48

Columns 2 and 5 of table 7 present DD-IV results for the Q1 subsam-
ple. Our point estimate indicates a decrease in per capita expenditure of
Rs 680 per month (not statistically distinguishable from zero), and we
can reject increases from “full electrification” greater than Rs 344 per
month (30%).49 The upper confidence intervals from our Q1 DD-IV esti-
mates and our fuzzy RD LATEs are very similar—despite using different
consumption measures, identification strategies, and endogenous treat-
ment variables.
Our results for larger villages tell a different story (cols. 3 and 6 of ta-

ble 7). Our point estimates for the Q25 subsample are positive and large
but statistically imprecise. We cannot reject a tripling of expenditures in
these larger villages.When we further restrict theQ25 subsample to districts
with high power quality, we estimate a per capita expenditure increase of
Rs 1,428 per month (139%, statistically significant at the 10% level).50

How should we interpret these magnitudes? We are estimating treatment
effects of a 100-pp increase in electricity access; shifting froma 0% to a 100%
grid connection rate has the potential to dramatically alter production and
consumption in the village economy. Nevertheless, in small villages, we find
that last-mile electrification does not lead to expenditure gains on average.
In contrast, we estimate nearly a doubling of per capita expenditure in large
villages, consistent with a prior literature that has found large impacts of
electrification.51 To fully evaluate the welfare impacts of rural electrification,
we compare these benefits to their costs in section VI.C.
B. Heterogeneous RGGVY Implementation Intensity
A potential concern with scaling up to “full-electrification” treatment
effects is that doing so extrapolates beyond the support of the RGGVY
48 Tables A8 and A9 report first-stage estimates for both Q1 and Q25 subsamples. Table A7
finds similar extensive-margin results for a two-wave NSS panel, comparing villages larger and
smaller than 2,000 people (roughly the median NSS village size). The sub-2,000-person sub-
sample produces results similar to the Q1 subsample, but with a weaker first-stage F-statistic.
Figure A2 replicates these DD population splits using a 2-year census panel, for the extensive
margin of village (rather than household) electricity access. This likewise reveals larger first-
stage effects for smaller villages.

49 Table A29 reports DD-IV results for a two-wave NSS panel of sub-2,000-person villages;
these estimates are very similar to our Q1 estimates in table 7 (though splitting directly on
village population shortens our NSS panel to two waves, weakening the first stage). Our
DD-IV regressions also lose first-stage power if we include state-specific trends (see table B10),
yet the Q1 point estimates remain similar.

50 Table A21 reports this result (with a first-stage F-statistic of 15.8). By contrast, when we
impose this same restriction on the Q1 subsample, we can reject 26% increases in expen-
diture per capita.

51 For example, IV point estimates in Dinkelman (2011) imply that a 100-pp increase in
electrification would double male earnings.
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policy. To address this concern, we leverage heterogeneity in RGGVY’s
implementation intensity across 10th-Plan districts. We isolate the 90
“high-intensity” districts where RGGVY treated at least 60% of villages,
thereby coming closest to the “full-electrification” ideal.52 In these dis-
tricts, our first-stage RD coefficients nearly double, to 0.973 hours of com-
mercial power access and 0.41 units of nighttime brightness. Despite
these much stronger first-stage effects, our reduced-form RD results are
largely unchanged.53 However, our NSS DD estimates for the Q25 subsam-
ple reveal 9% reduced-form expenditure increases in high-intensity dis-
tricts (statistically significant at the 1% level). Figure 8 presents both sets
of reduced-form expenditure results, demonstrating the stark contrast
between the null expenditure effects in 300-person villages and large
expenditure gains in larger villages.
C. Welfare Analysis
Finally, we evaluate the welfare effects of “full electrification.”We use two
strategies for quantifying economic benefits, which we compare against
the costs of electrification. First, we use our fuzzy RD and DD-IV estimates
of the effects of electrification on expenditure per capita. This welfare
proxy is well suited to measure treatment effects from an electrification
program that affects multiple sectors of the village economy, since con-
sumption spending should capture any electricity-induced changes in ag-
ricultural and firm productivity.54 To account for the uncertainty in our
econometric estimates, we take 10,000 draws from the sampling distribu-
tions of our fuzzy RD coefficients in column 1 of table 6 and our DD-IV
coefficients in columns 2 and 3 of table 7.55

We compute village surplus by multiplying per capita expenditure by
population size, to measure effects for 300- (aligning with our fuzzy RD
LATEs), 1,000-, and 2,000-person (roughly the median village sizes in
52 Figure A6 shows the distribution of RGGVY implementation intensity across 10th-Plan
districts. In 35 “low-intensity” 10th-Plan districts, RGGVY treated less than 60% of eligible
villages. We report the results of this heterogeneity analysis in tables A12–A17 and fig. A7.

53 While we find suggestive evidence that RGGVY may have decreased the share of
households with poverty indicators by 3.3 pp or increased nonagricultural employment
by 0.9 pp (both statistically significant at the 10% level), these magnitudes remain modest
in high-intensity districts (see table A15).

54 The median village in the 2013 Economic Census had 1.7 employees per firm. Any
electricity-induced productivity gains for these microenterprises would likely accrue to res-
idents of the village.

55 Figure A15 plots these sampling distributions, which we convert to 2010 rupees per
year. Our NSS expenditure variable subtracts spending on electricity, in order to account
for the benefits and costs of electricity consumption. We lack the data to do the same for
SHRUG expenditure per capita, meaning that our fuzzy RD estimates may slightly over-
state net welfare benefits.
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our Q1 and Q25 subsamples) villages. Then, we calculate the present dis-
counted sum of village-wide benefits over 20 years, assuming annual pop-
ulation growth rates from the 2001 and 2011 censuses. We subtract the
up-front costs of electrification, usingRGGVY’s allowable cost norms: fixed
costs of Rs 1.8 million per village, plus Rs 2,200 in variable costs per house-
hold (Banerjee et al. 2014).56 These numbers are on the low end of rural
electrification costs: Lee, Miguel, and Wolfram (2020b) document per-
household costs at least an order of magnitude larger in Kenya.
Table 8 reports the share of expenditure draws that generate a positive

return on investment (ROI) from rural electrification. For a 300-person
village, our fuzzy RD results imply that “full electrification” has less than a
27% chance of generating expenditure benefits that exceed up-front
costs, even at with low discount rate of 5%. For a 1,000-person village,
our Q1 DD-IV results imply less than a 9% chance of a positive ROI. By
contrast, our DD-IV results in theQ25 subsample imply a 90% probability
of positive returns from “fully electrifying” a 2,000-person village. This dif-
ference is driven primarily by larger per capita treatment effects in Q25
villages.57
FIG. 8.—Reduced-form expenditure effects, all districts versus high-intensity districts.
This figure plots reduced-form estimates for expenditure per capita. For regressions where
the outcome variable is in levels (circles), we divide point estimates by within-sample means
of the outcome variable to interpret as percent changes. For regressions where the out-
come variable is in logs (triangles), we convert point estimates to percent changes (i.e.,
expðbÞ 2 1). “All districts” estimates pool all 130 RGGVY 10th-Plan districts. “High-
intensity” estimates use only the 90 RGGVY 10th-Plan districts where at least 60% of villages
received treatment. Whiskers display 95% confidence intervals. We report the correspond-
ing point estimates in (from left to right) tables 4, A15, A24, and A17.
56 Variable costs are based on the allowable costs for below-poverty-line household con-
nections, which were fully subsidized under RGGVY. We inflate these cost norms from 2008
rupees to 2010 rupees.

57 Table A25 reports similar results using RGGVY’s “low” fixed-cost norm of Rs 1.3 mil-
lion per village (Banerjee et al. 2014) and assuming zero population growth.
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The gap in expenditure-based ROIs between small and large villages
suggests that electrification was more effective at creating new income-
generating opportunities in larger communities. We test the extent to
which structural transformation explains the ROI gap using village-level
outcomes from theEconomicCensus. Figure 9 plots reduced-formDDco-
efficients by bins of village population. In smaller villages, we see no evi-
dence that RGGVY drove firm growth. However, in villages larger than
3,000 people, we find 10% increases in the number of firms and 9% in-
creases in the number of firm employees. This suggests that large villages
were able to reap the benefits of expanded electricity access by shifting
production into firms, whereas this did not occur in smaller villages.
Our second strategy for quantifying the benefits of “full electrification”

uses our first-stage DD estimates to model households’ consumer surplus
from electricity use. We divide our intensive-margin kilowatt-hour esti-
mates by our extensive-margin estimates for household connections. This
scales RGGVY’s impact on household electricity consumption to a “full-
electrification” benchmark where 100% of households receive new grid
connections, while conservatively assuming that all estimated kilowatt-
hour increases come fromnewhousehold connections. This implies an av-
erage monthly consumption per newly connected household of 53.9 kWh
in Q1 villages and 73.4 kWh in Q25 villages. Using these kilowatt-hour
TABLE 8
Return on Investment (ROI) from Electrification,

Using Consumption Expenditure

Pr(20-year ROI > 0), by village population

300 300 1,000 2,000

Discount rate:
r 5 .05 .176 .268 .090 .910
r 5 .10 .159 .240 .089 .909
r 5 .15 .140 .213 .086 .908

Expenditure/capita SHRUG SHRUG NSS NSS
Endogenous variable Hr pwr Brightness 1[HH elec > 0] 1[HH elec > 0]
Instrument 300-person

RD
300-person

RD
1st-wave district 1st-wave district

Estimation sample RD BW RD BW Quintile 1 Quintiles 2–5
Note.—We simulate expenditure benefits using our results from col. 1 of table 6 and
cols. 2–3 of table 7. We rescale fuzzy RD estimates by 10 (for hours of commercial power)
and 2.6 (for nighttime brightness) and convert all four estimates to annual expenditures
per capita in 2010 rupees. Then, we make 10,000 draws from each rescaled sampling dis-
tribution (see fig. A15) and calculate the 20-year discounted sum of expenditure changes
for villages of 300, 1,000, or 2,000 people. We assume a constant flow of annual benefits in
the village, applying annual population growth rates from the 2001 and 2011 censuses. Fi-
nally, we subtract up-front fixed and variable costs of electrification. Following Banerjee
et al. (2014, 51), we assume fixed costs of Rs 1.8 million per village and variable costs of Rs
2,200 per household, inflating from 2008 to 2010 rupees. Table A25 repeats these simula-
tions under alternative fixed costs and without population growth. Hr pwr 5 hours of power;
HH elec 5 household electricity consumption; BW 5 bandwidth.
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quantities, an electricity price of Rs 2.64 per kWh, and a demand elasticity
of 20.62 from Burgess et al. (2023), we calculate consumer surplus per
household under the assumption of linear demand.58

Table 9 presents 20-year internal rates of return (IRRs) from “full electri-
fication,” applying the same cost assumptions as in table 8.59 Row 3 reports
IRRs for our preferred scenario, which assumes annual growth in popula-
tion (from the census) and kilowatt-hour consumption. In this scenario,
the IRR for a 300-person village is 0%, implying that “full electrification”
is welfare reducing under any time discounting. For a 1,000-person village,
the 13% IRR is just above the 10%–12% threshold commonly used to
benchmark cost-effectiveness (Asian Development Bank 2013; Bonzanigo
and Kalra 2014). The 33% IRR for a 2,000-person village far exceeds this
threshold, implying large welfare increases from “full electrification.”
Our results are similar if we construct kilowatt-hours allowing heterogene-
ity by expenditures per capita (row 4), allow expenditure growth to translate
FIG. 9.—Village-level DD of Economic Census outcomes, by village population bin. This
figure plots DD coefficients by village population bin for outcomes in panel D of table 4.
Regressions use a panel of four Economic Census waves (1990, 1998, 2005, 2013), with
814,715 village-year observations. We interact DD treatment (1[10th-Plan district] � 1[2013])
with bins of 2001 village population (≤500, 501–1,000, ... , 2,501–3,000, >3,000). In the >3,000
bin, the average village had 187 firms and 408 employees—meaning that our DD estimates
for this bin represent 10% and 9% increases, respectively. We interact year fixed effects
with population bins and with two sets of quantiles in 2005 expenditure per capita at
the district level (within-state quartiles and national deciles). Regressions also include vil-
lage fixed effects, state-specific linear trends, and year-specific slopes in 2001 village-level
covariates (which increase precision). Whiskers display 95% confidence intervals (CIs),
with standard errors clustered by district.
58 This consumer surplus approach follows Barreca et al. (2016) and Lee, Miguel, and
Wolfram (2020b) in applying a Dubin and McFadden (1984) discrete/continuous model.
It has the advantage of capturing non–expenditure-related aspects of private utility, such as
the ability to read at night using electric lighting.

59 Table A26 replicates table 9 under RGGVY’s “low” fixed-cost norm (Banerjee et al.
2014). Table A28 provides more detail on the assumptions entering into these IRR calcu-
lations. Table A27 reports first-stage NSS estimates split by expenditure quartiles, used in
rows 4–6 of table 9.
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into annual increases in kilowatt-hours consumed (rows 5–6), or restrict our
sample to districts with at least 10 hours per day of rural power supply
(row 7).60 Across a range of assumptions, we find that rural electrification
reduces welfare in small villages and yields substantial welfare gains in
large villages.
These divergent results for small and large villages help to reconcile

conflicting estimates in the existing literature. Lee, Miguel, and Wolfram
(2020b) find that electrification is benefit-cost negative in Kenyan villages
with an average size of 535 people. In contrast, prior research showing
positive impacts of electrification has focused on larger treated popula-
tions: approximately 1,200-person villages in the Philippines (Chakra-
vorty, Emerick, and Ravago 2016), similar-sized communities in South
TABLE 9
IRRs from Electrification, Using Consumer Surplus

First-Stage NSS Estimates Scenario

IRRs by village

population (%)

300 1,000 2,000

1. Q1 versus Q25 split No population or kWh growth . . . 8 27
2. Q1 versus Q25 splits No kWh growth . . . 10 29
3. Q1 versus Q25 splits Preferred 0 13 33
4. Expenditure quartile splits Preferred 1 15 26
5. Expenditure quartile splits NSS expenditure growth 1 16 28
6. Expenditure quartile splits 3% expenditure growth 2 15 28
7. Q1 versus Q25 splits, districts
with high power quality Preferred . . . 13 75
60 One might worry that low ben
tent power supply in Indian villages
per day of rural power supply in 20
first-stage impacts on the extensive
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Note.—Each row calculates internal rates of return from electrifying all households in
villages of 300, 1,000, and 2,000 people. We use econometric estimates to calculate as-
sumed kilowatt-hours per newly electrified household, dividing first-stage kWh/month es-
timates byfirst-stage extensive-margin estimates. Rows 1–3 use cols. 2 and4 from tables A8–A9;
rows 4–6 use estimates from table A27 weighted by household expenditure shares for NSS vil-
lages of each size; row 7 uses cols. 3–6 of table A20. Using these consumption levels, we apply
the methodology of Lee, Miguel, and Wolfram (2020b) to calculate consumer surplus per
household. We assume linear demand, a retail electricity price of Rs 2.64 per kWh (the
2010 NSS median price), and a rural electricity demand elasticity of 0.62 (Burgess et al.
2023; Mahadevan [forthcoming] finds a similar rural residential elasticity of 0.56). We calculate
IRRs by taking a 20-year discounted sum of consumer surplus in the village, using the same
cost assumptions as in table 8 (see table 8 note for details.) Our preferred scenarios apply
annual population growth rates from the 2001 and 2011 censuses and 3% annual growth in
electricity consumption. In rows 1, 2, and 7, electrification decreases welfare for 300-person vil-
lages, even with a 0% discount rate. Table A26 repeats these calculations assuming lower
fixed costs per village. Table A28 breaks down the components used to construct these IRRs.
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Africa (Dinkelman 2011), entire Brazilian counties (Lipscomb, Mobarak,
and Barham 2013), and entire Indian states (Rud 2012).61
VII. Conclusion
What are the economic effects of expanding electricity access? This paper
evaluates the medium-run welfare impacts of electrification in the context
of RGGVY, India’s flagship national rural electrification program. RGGVY
brought electricity access to the world’s largest unelectrified population,
affecting over 400,000 villages across rural India. The lessons fromRGGVY
are highly relevant to ongoing electrification efforts, since RGGVY took
place while India was at a level of economic development similar to that
of themajority of today’s unelectrified populations. RGGVYprovided con-
nections to the power grid, which likely represents the future of rural elec-
trification despite the emergence of minigrids (Burgess et al. 2023).
Against this backdrop, we demonstrate that RGGVY significantly shrank—

though it did not eliminate—India’s electricity access gap. Despite in-
creases in electricity access and consumption, the program generated
limited economic impacts in the medium term. We scale these program
effects using IVs, and we can reject meaningful economic benefits from
electrifying small villages.
When considering the full welfare consequences of rural electrification,

we find that any benefits that may accrue to small villages do not outweigh
the costs of electrifying low-population areas. However, we find that electri-
fication creates sizeable welfare gains in larger villages, likely due in part to
structural transformation. These results—from a single massive electrifica-
tion program—help to reconcile estimates from the literature, which has
recently found small economic impacts in villages (e.g., Lee, Miguel, and
Wolfram 2020b) and previously found large effects in bigger populations
(e.g., Rud 2012).
Our results imply that targeting can help to improve the economic effi-

ciency of last-mile electrification. They signal the potential importance of
targeted complementary investments: we find that reliable power supply
increases the benefits from electrification in large villages but not in small
villages. Our results also speak to other investments besides electricity.
While “first-mile” infrastructure projects have been shown to improve wel-
fare in low-income settings (e.g., transportation networks in Donaldson
2018 and Banerjee, Duflo, and Qian 2020), last-mile investments may be
less likely to generate meaningful changes in well-being (e.g., rural roads
61 Summary statistics from Chakravorty, Emerick, and Ravago (2016) suggest an average
of 240 households per village, with a mean household size of 5.25, for an approximate vil-
lage population of 1,200. Dinkelman (2011) reports averages of 630 and 765 adults (aged 15–
59) per community. Assuming that households include 5 people on average yields approx-
imately 1,150 people per community.
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in Asher and Novosad 2020). Policy makers wishing to provide public
goods to rural communities face two challenges: not only are there high
costs of providing infrastructure to remote, sparsely populated areas, but
these communities may not be able to translate improved infrastructure
into meaningful economic gains.
Data Availability
All data and programs required to replicate this paper can be found in
Burlig and Preonas (2024) in the Harvard Dataverse, https://doi.org
/10.7910/DVN/APWICK.
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